SFP-10G-SR-OC 850nm SFP+ Multi-Mode for 10GbE / 10GFC Duplex SFP+ Transceiver

Features

- Operating data rate up to 10.3Gbps
- ♦ 850 nm VCSEL Transmitter
- ◆ Up to 300m on 50/125um MMF(2000Mhz.km)
- Single 3. 3V Power supply and TTL Logic
 Interface
- ◆ Duplex LC Connector Interface
- Hot Pluggable
- ◆ Operating Case Temperature Standard: 0°C~+70°C,
- ◆ Compliant with MSA SFP+ Specification
- ◆ Compliant to IEEE 802.3ae 10GBASE-SR
- ◆ Compliant to IEEE 802.3ae 10GBASE-SW
- Digital diagnostic monitor interface

Applications

◆ 10G Ethernet at 10.3125Gbps

Ordering information

Part No. Data Rate Lase	Fibre Type	stance Option	
-------------------------	------------	---------------	--

SFP-10G-SR-OC 10.3	Sbps 850nm VCSEL	MMF	300m	LC	YES
--------------------	------------------	-----	------	----	-----

Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883G Method 3015.7	Class 1C (>1000 V)
Electrostatic Discharge to the enclosure	EN 55024:1998+A1+A2 IEC-61000-4-2 GR-1089-CORE	Compliant with standards
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN55022:2006 CISPR 22B :2006 VCCI Class B	Compliant with standards Noise frequency range: 30 MHz to 6 GHz. Good system EMI design practice required to achieve Class B margins. System margins depend on customer host board and chassis design.
Immunity	EN 55024:1998+A1+A2 IEC 61000-4-3	Compliant with standards. 1kHz sine-wave, 80% AM, from 80 MHz to 1 GHz. No effect on transmitter/receiver performance is detectable between these limits.
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11 EN (IEC) 60825-1:2007 EN (IEC) 60825-2:2004+A1	CDRH compliant and Class I Laser product. TüV Certificate No. 50135086
Component Recognition	UL and CUL EN60950-1:2006	UL file E317337 TüV Certificate No. 50135086 (CB scheme)
RoHS6	2002/95/EC 4.1&4.2 2005/747/EC 5&7&13	Compliant with standards

Note: In light of item 5 in RoHS exemption list of RoHS Directive 2002/95/EC, Item 5: Lead in glass of cathode ray tubes, electronic components and fluorescent tubes.

In light of item 7 in RoHS exemption list of RoHS Directive 2005/747/EC, Item7: Lead in high melting temperature type solders (i.e. lead-based alloys containing 85% by weight or more lead). Lead in solder for servers, storage and

storage array systems, network infrastructure equipment for switching, signaling, transmission as well as network management for telecommunications. Lead in electronic ceramic parts (e.g. piezoelectronic devices).

In light of item 13 in RoHS exemption list of RoHS Directive 2005/747/EC, Item13: Lead and cadmium in optical and filter glass. The three exemptions are being concerned for these transceivers, because these transceivers use glass,

which may contain Pb, for components such as lenses, windows, isolators, and other electronic components.

Product Description

The SFP-10G-SR-OC multi-mode transceiver is an SFP+ module for bi-directional serial optical data communications such as 10GBASE-SR and 10GBASE-SW.

It is with the SFP+ 20-pin connector to allow hot plug capability. Digital diagnostic functions are available via an I2C. This module is designed for multi-mode fiber and operates at a nominal wavelength of 850 nm.

The transmitter section uses a Vertical Cavity Surface Emitted Laser (VCSEL) and is Class 1 Laser compliant according to International Safety Standard IEC 60825. The receiver section uses an integrated GaAs detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC.

Absolute Maximum Ratings

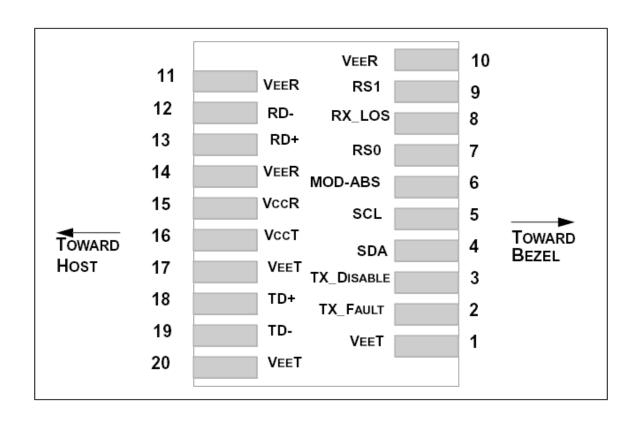
Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	V _{CC}	-0.5	3.6	V

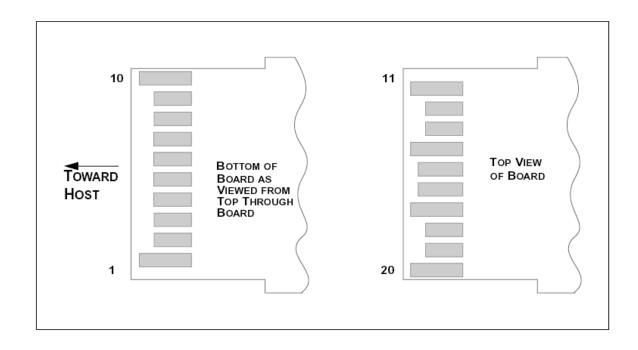
Recommended Operating Conditions

Parameter	Symbol		Min.	Typical	Max.	Unit
Operating Case	T _A	SFP-10G-SR	0		+70	°C
Temperature	IA	3FF-10G-3R	U		+70	
Power Supply Voltage	V _{cc}		3.15	3.3	3.45	V
Power Supply Current	I _{cc}				300	mA
Surge Current	I _{Surge}				+30	mA
Baud Rate				10.3125	10.5	GBaud

Performance Specifications - Electrical

Parameter	Symbol	Min.	Тур.	Max	Unit	Notes
Transmitter						
CML	Vin	150		1200	mVp	AC coupled


Inputs(Differential)						inputs
Input Impedance (Differential)	Zin	85	100	115	ohms	Rin > 100 kohms @ DC
Tx_DISABLE Input Voltage - High		2		3.45	V	
Tx_DISABLE Input Voltage - Low		0		0.8	V	
Tx_FAULT Output Voltage High		2		Vcc+0.3	V	lo = 400μA; Host Vcc
Tx_FAULT Output Voltage Low		0		0.5	V	lo = -4.0mA
		Red	ceiver			
CML Outputs (Differential)	Vout	350		700	mVpp	AC coupled outputs
Output Impedance (Differential)	Zout	85	100	115	ohms	
Rx_LOS Output Voltage - High		2		Vcc+0.3	V	lo = 400μA; Host Vcc
Rx_LOS Output Voltage - Low		0		0.8	V	lo = -4.0mA
MOD DEF (0:2)	VoH	2.5			V	With Serial ID
MOD_DEF (0:2)	VoL	0		0.5	V	With Senai ID


Optical and Electrical Characteristics

Parame	eter	Symbol	Min.	Typical	Max.	Unit	
50 / 125 mn	n MMF			300		m	
Data Ra	ate			10.3		Gbps	
		Transmitt	er				
Centre Wave	elength	λ _C	840	850	860	nm	
Spectral Widt	h (RMS)	σ			0.45	nm	
Average Outp	ut Power	P _{0ut}	-6		-1	dBm	
Extinction	Ratio	ER	3.0	5.0		dB	
Output Option	cal Eye		IEEE 802.3-2005 Compliant				
Transmitter Dispersion Penalty		TDP			3.9	dB	
Input Differential	Impedance	Z _{IN}	90	100	110	Ω	
TV Diaghla	Disable		2.0		Vcc+0.3	V	
TX Disable	Enable		0		0.8		
TV Fault	Fault		2.0		V _{CC} +0.3	V	
TX_Fault	Normal		0		0.8	V	
TX_Disable As	TX_Disable Assert Time				10	□us	
Receiver							
Centre Wave	Centre Wavelength		840	850	860	nm	
Receiver Se	nsitivity	PIN			-11.1	dBm	
Output Differentia	I Impedance	P _{IN}	90	100	110	Ω	

Receiver Overload		P _{MAX}	-1		dBm
Optical Return Loss		ORL		-12	dB
LOS De-Assert		LOS _D		-12	dBm
LOS Assert		LOS _A	-25		dBm
1.00	High		2.0	V _{CC} +0.3	\/
LOS	Low		0	0.8	V

SFP+ Transceiver Electrical Pad Layout

Pin Function Definitions

Pin Num.	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	
2	TX Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2, Module disables on high or open
4	SDA	Module Definition 2	3	Note 3, Data line for Serial ID.
5	SCL	Module Definition 1	3	Note 3, Clock line for Serial ID.
6	MOD-ABS	Module Definition 0	3	Note 3
7	RS0	RX Rate Select (LVTTL).	3	This pin has an internal 30k pull down to ground. A signal on this pin will not affect module performance.
8	LOS	Loss of Signal	3	Note 4
9	RS1	TX Rate Select (LVTTL).	1	This pin has an internal 30k pull down to ground. A signal on this pin will not affect module performance.

10	VeeR	Receiver Ground	1	Note 5
11	VeeR	Receiver Ground	1	Note 5
12	RD-	Inv. Received Data Out	3	Note 6
13	RD+	Received Data Out	3	Note 7
14	VeeR	Receiver Ground	1	Note 5
15	VccR	Receiver Power	2	3.3 ± 5%, Note 7
16	VccT	Transmitter Power	2	3.3 ± 5%, Note 7
17	VeeT	Transmitter Ground	1	Note 5
18	TD+	Transmit Data In	3	Note 8
19	TD-	Inv. Transmit Data In	3	Note 8
20	VeeT	Transmitter Ground	1	Note 5

Notes:

- 1) TX Fault is an open collector/drain output, which should be pulled up with a $4.7K-10K\Omega$ resistor on the host board. Pull up voltage between 2.0V and VccT, R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.
- 2) TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7 10 K Ω resistor. Its states are:

Low (0 - 0.8V): Transmitter on

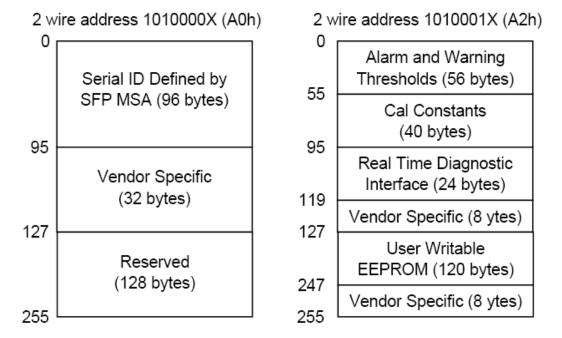
(>0.8, < 2.0V): Undefined

High (2.0 – 3.465V): Transmitter Disabled

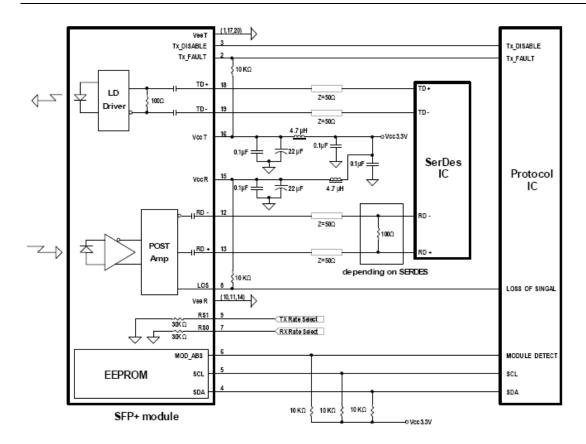
Open: Transmitter Disabled

- 3) Modulation Absent, connected to VEET or VEER in the module.
- 4) LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a $4.7K 10K\Omega$ resistor. Pull up voltage between 2.0V and VccT, R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.
- 5) VeeR and VeeT may be internally connected within the SFP+ module.
- 6) RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done

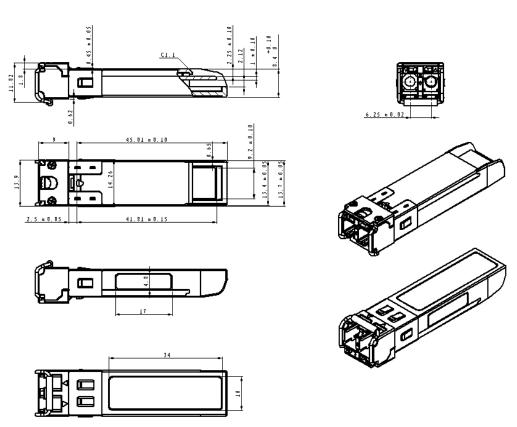
inside the module and is thus not required on the host board. The voltage swing on these lines will be between 370 and 700 mV differential (185 –350 mV single ended) when properly terminated.


- 7) VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP+ connector pin. Maximum supply current is 300mA. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP+ input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP+ transceiver module will result in an inrush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP+ transceiver module.
- 8) TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 150 1200 mV (75 600mV single-ended), though it is recommended that values between 150 and 1200 mV differential (75 600mV single-ended) be used for best EMI performance.

EEPROM


The serial interface uses the 2-wire serial CMOS EEPROM protocol defined for the ATMEL AT24C02/04 family of components. When the serial protocol is activated, the host generates the serial clock signal (SCL). The positive edge clocks data into those segments of the EEPROM that are not write protected within the SFP+ transceiver. The negative edge clocks data from the SFP+ transceiver. The serial data signal (SDA) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

The Module provides diagnostic information about the present operating conditions. The transceiver generates this diagnostic data by digitization of internal analog signals. Calibration and alarm/warning threshold data is written during device manufacture. Received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring all are implemented. If the module is defined as external calibrated, the diagnostic data are raw A/D values and must be converted to real world units using calibration constants stored in EEPROM locations 56 – 95 at wire serial bus address A2h. The digital diagnostic memory map


specific data field define as following .For detail EEPROM information, please refer to the related document of SFF 8472 Rev 10.2

Recommend Circuit Schematic

Mechanical Specifications

Eye Safety

This single-mode transceiver is a Class 1 laser product. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.